工IEY KNOX LIBRARY

- ~AAL POSTGRADUATE SCHCCI
(I)HTEREY, CALIF. 93940

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

INTEGRATION OF FINITE ELEMENT ANALYSIS PROGRAM FOR CONDUCTION HEAT TRANSFER WITH COMPUTER ANALYSIS LANGUAGE

by
Warren Leigh Roberts

June 1982

Thesis Advisor:
G. Cantin

Approved for public release, distribution unlimited.

> T204534

SECURITY CLASSIFICATIOM OF TWIS PAGE (WMED Dere Entored)

REPORT DOCUMENTATION PAGE	BEFEAD INSTRUCTINNS
FEPORT NUMTEM	3. reciment's catalog number
4. Title (mad Subticto) Integration of Finite Element Analysis Program for Conduction Heat Transfer with Computer Analysis Language	5. TYPE OF REPORT PERIOO COVEREO Master's Thesis; June 1982
Warren Leigh Roberts	- contract on grant mumeentos
9. PERFORMING ORGANIZATION NAME AMO ADONESS Naval Postgraduate School Monterey, California 93940	
Naval Postgraduate School Monterey, California 93940	$\begin{aligned} & \text { 12. REPORT DATE } \\ & \text { June } 1988 . \\ & \hline 13 \text { NUMEEROFPAGES } \end{aligned}$
	18. SECUAITY CLASS. (ot inie romort) Unclassified T5. OECLASSLIEICATIOM/DOWMGAOING

18. OISTRIBUTION STATEMENT (Of inle Rapert)

Approved for public release, distribution unlimited.
17. DISTAIBUTION STATEMENT (of ino abatract antored in Eloct 20, if afflorent trom Report)

IR. SUPPLEMENTARY MOTES

Finite Element Conduction
Interactive
CAL
FEAP
20. ABSTAACT (Centlmu en reverce ofde $1 f$ necesecer and thentlfy by bleck muber)

The Finite Element Analysis Program (FEAP) was modified and integrated with the Naval Postgraduate School version of the Computer Analysis Language (CAL-NPS). This enables the solution of linear and non-linear, two and three dimensional heat conduction problems in an interactive mode. The usual types of boundary conditions, including radiation, may be specified. The heat conduction group includes prompts for
user supplied data. Several existing CAL-NPS commands were improved and a "HELP" facility was added. Commands were added for visual display of the finite element mesh at graphics terminals. The User Guide for this expanded version of CAL-NPS is provided.

Approved for public release, distribution unlimited.

$$
\begin{gathered}
\text { Integration of Finite Element Analysis } \\
\text { Program for Conduction Heat Transfer } \\
\text { with computer Analysis Language } \\
\text { by } \\
\text { Lieutenant Commander, Unitedtstates Navy } \\
\text { B.A. Macalester College. } 1971
\end{gathered}
$$

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL

ABSTRACT

The Finite Element Analysis Program (FEAP) was modified and integrated with the Naval postgraduate School version of the Computer Analysis Language (CAL-NPS). This enables the solution of linear and non-linear, two and three dimensional heat conduction problems in an interactive mode. The usual types of boundary conditions. including radiation, may be specified. The heat conduction group includes prompts for user supplied data. Several existing CAL-NPS commands were improved and a "HELP" facility was added. Commands were added for visual display of the finite element mesh at graphics terminals. The User Guide for this expanded version of CAL-NPS is provided.

TABLE OF CONTENTS

I. INTRODUCTION 10
A. GENERAL DESCRIPIION 10
B. HISTORICAL BACKGROOND 10
C. OBJECTIVES 11
II. ORGANIZATION OF HEAT TRANSFER GROUP 12
A. DATA INPUT 12

1. Initialization 12
2. Nodal Coordinates 12
3. Element Connectivity 13
4. Material Properties 13
5. Constant Temperature Nodes 14
6. Equation Profile 14
B. SOLUTION 14
7. Forming Conductivity Matrix 15
8. Forming Heat Capacity Matrix 15
9. Forming Flux Vector 15
10. Equation Solving 15
11. First Order Ordinary Differential Equation Solver 16
12. Printing Nodal Temperatures 16
III. ORGANIZATION OF GRAPHICS GROUP 17
A. TITLE 17
B. HEAT TRANSFER MESH 17
C. STRUCTURAL MESH 18
IV. CHANGES TO EXISTING GROUPS19
A. UTILITY SUBROUTINES 19
13. Subroutine RCARD 19
14. Subroutine FRTCMX 19
B. GROUP 1 20
15. SAVE Operation 20
16. RESUME Operation 20
17. LOADI Operation 20
18. PRINT Operation 21
19. RELP Operation 21
C. GROOP 2 21
20. NODES Operation 21
V. SOLUTION OF CONDUCTION HEAT TRANSFER PROBLEMS 22
A. STEADY STATE PROBLEMS 22
21. Linear Heat Conduction Problems 22
22. Non-Iinear Hea亡 Conduction Problems 22
B. TIME DEPENDENT PROBLEMS 23
23. Linear Heat Conduction Problems 23
24. Non-Iinear Heat Conduction Problems 24
C. NOMERICAL EXAMPLES 25
25. Hollow Cylinder with Circumferential Heating Stri ps 25
26. Transient Surface Temperatures in an Infinite Plate 25
VI. CONCLUSIONS AND RECOMMENDATIONS 27
APPENDIXA: USER'S GUIDE 33
A. FORM AND RESTRICTION OF THE LANGUAGE 33
B. SUMMARY OF COMMANDS 35
27. General Commands 35
28. General Matrix Commands 35
29. Static Analy sis Operations 36
30. Dynamic analysis Operations 36
31. Heat Transfer Operations 36
32. Graphics Ope rations 37
33. Loop Operations 37
34. Names Available for User Subroutines 37
C. EXECUTION OF CAL-NPS 38
D. CAL-NPS COMMAND SPECIFICATIONS 39
35. General Matrix Operations 39
36. Static Analysis Operations 45
37. Dynamic analysis Operations 58
38. Heat Transfer Operations 63
39. Graphics Operations 73
40. Looping operations 75
41. User Defined Operations 76
E. LARGE PROBLEMS 77
APP ENDIX B: SAMPLE DATA FILE 78

03
化

＂

ACKNO RL EDG EMENT

The author wishes to express his sincere appreciation to Professor Gilles Cantin for his invaluable guidance, help and friendship as instructor and thesis advisor. In addition, the author wishes to thank Professor Y. S. Shin for his interest, comments and thoughtful advice.

This thesis could not have been undertaken without the work by LCDR L. B. Elliot, USN, and LT J. M. Bettencourt, portugese Navy, who prepared the way by installing Cal and FEAP, respectively, at Naval Postgraduate School.

Finally the author wishes to thank his wife, Mary, for her patience, understanding and encouragement throughout the course of this work.

I. INTRODUCTION

A. GENERAL DESCRIPTION

Since the implementation of the Finite Element Analysis program (hereafter refered to as feap) at the Naval postgraduate School, it has had only limited use. It is now available to general NPS users in an interactive form through the IBM 3033 VM/MVS time sharing system. The data management and user interactive command structures were established within the existing interactive program. Computer Analysis Language (CAL). This integration of systems provides the ability to solve linear and nonlinear, steady and unsteady, two and three limensional heat conduction problems involving temperature dependent thermophysical properties and complicated radiation/convection bourdary conditions.

Additional capability was provided to CAL system users both in changes to existing subroutine groups and in the addition of a new graphics group with its attendant command structure. The graphics functions enable the user to plot two- and three- dimensional structural and heat transfer meshes. Another new facility is the HELP operation which allows a user experiencing trouble with a particular operation to interactively obtain assistance.

B. BISTORICAL BACKGROOND

The original Cal program was developed by Professor E. L. Wilson of the University of California in 1977 [Ref. 1]. It was later adapted and modified for use at the Naval Postgraduate School by LCDR L. B. Elliot [Ref. 2]. The FEAP program was written by Professor R. L. Taylor of the

University of California [Ref. 3] in 1977. Implementation of FEAP at Naval Postgraduate School was done by LT J. M. Bet tencourt [Ref. 4].
C. OBJECTIVES

The objectives of the a uthor's work have been to:

1. integrate the data management system of FEAP with CAL to create an interactive conduction heat transfer problem solving system;
2. modify existing operations to extend their usefulness;
3. add operations to extend the capabilities of the program to include graphics:
4. create a HELP facility;
5. create a JSER'S MANOAL to facilitate use of this program.

II. ORGANIZATIOR OP HEAT TRANSPER GROUP

This chapter provides a general overview of the organization of the Heat Transfer Group of CAL. It is intended to provide sufficient information to permit users to operate the Cal heat transfer package.

The execution of the program is flexible and controlled by user selection of operations in a logical sequence from the commands that are available. There are two broad categories of operations, data input and problem solution.

A. DATA INPUT

1. Inititalization

The heat transfer group performs matrix creation and manipulation automatically. As the problem progresses, arrays are created, altered and deleted under program control. Through the HTXFR operation the user provides sufficient information to establish the initial arrays for data input and problem solution. The number of nodes, number of elements, number of material sets, spatial dimension, number of degrees of freedom per node and the maximum number of nodes per element are required. For heat transfer problems the number of degrees of freedom per node is always one. The option to assign a higher number is available because the equation solvers in this program are applicable to other fields of which future work may make use.

2. Nodal Coorcdinates

Nodal coordinates are input via the Coord operation. This operation has built in node generation capability. By specifying an initial point and a node generation vector,
the user may easily input large meshes.
Coordinate system conversion is also available. Coordinates may be input in
 the three axes longitudinal, the spherical system or any combination of the above systems. All coordinates are converted to Cartesian coordinates for use with CAL.

3. Element Connectivi=さ

The ELCON operation inputs the element connectivity data. Here again is a generation capability. The user may specify the connectivity for one element and a generation vector to create additional rows.

For the two-dimensional elements the user may specify a 4 to 9 node isoparametric element. There is an 8 to 21 node isoparametric element for three-dimensional elements. Both of these elements must follow the numbering convention shown in Appendix A.

4. Material properties

The required amount of material property information varies from problem to problem. The PROP operation prompts the user for the information required to solve the problem at hand. At a minimum the material's conductivity (k). specificheat (C) . specific mass (5 ho), heat generaさion per unit volume (q''') and the geometry type (plane or axisymetric) must be specified in a consistent system of units. Appendix A includes examples of consistent systems.

The user also inputs the number of Gaussian points per direction for quadrature and codes for temperature dependent properties and boundary zonditions. The codes indicate other information required. Temperature dependent properties are input as tables and linear interpolation is used to determine the property value at a given temperature. Boundary conditions are specified as shown in Appendix A.

If an exterior boundary line or surface condition is not specified, it is assumed to be insulated.
5. Constant Temperature №des

For problems requiring certain nodes to be at constant temperature, the CTEMP operation is available. This operation may also be used during the solution stage of the problem to provide step changes at previously specified constant temperature nodes. Because this operation generates an array used in profiling the solution equations, the user may not change the node numbers that were established as constant constant temperature nodes after execution of the pROF operation. The temperatures of these nodes, however, may be changed.

6. Equation profile

The PROF operation establishes the equation profile for problem solution. prior to the execution of this operation, any data input may be changed by specifying the appropriate operation and re-entering the data. After its execution the user may not change the nodes designated as constant temperature nodes to temperature varying nodes or vice versa. The user may change the value of the constant tem peratures.

B. SOLUTION

The matrix formulation of the heat transfer problem as discussed in Reference 4 is:

$$
\begin{equation*}
[K]\{T\}+[C]\{\dot{T}\}+\{F\}=\{0\} \tag{1}
\end{equation*}
$$

where (K) represents the conductivity matrix, (C) represents the heat capacity matrix, \{F\} represents the flux vector and $\{T\}$ represents the temperature vector. The derivative of \{T\} with respect to time is \{T\}. The flux vector includes
heat generated per unit volume and boundary fluxes as specified for given boundary surfaces. This is a fully generalized formulation, including non-linearities, since the matrices [K] and [C] and the vector $\{F\}$ can be temperature dependent.

1. Forging Conductivity Matrix

For heat transfer problems, which involve only one degree of freedoll per node, the conductivity matrix, [K], will always be symmetric. The capability for generating unsymmetric matrices was provided, but will only be applicable when additional types of problems are programmed into the CAL system. The comand for the unsymmetric conductivity matrix formulation is USYMC.

2. Forming Heat Capacity Matrix

The heat capacity matrix, [C], used in time dependent problems, can be generated with either CCAP or LCAP. To form a consistent capacitance approximation use the operation CCAP. A lumped capacitance approximation is formed using the LCAP operation.

3. Forging Flux Vector

To complete the problem formulation, the flux vector, \{F\}, must be generated. The FORM operation forms the flux vector taking into account the internal heat generation and boundary surface fluxes as indicated in the PROP operation.
4. Equation Solving

Once the time independent problem is formulated, the tem perature vector, \{T\}, is calculated by the CALC operation. Time dependent problems do not use this operation, but rather the ordinary differential equation solver.

5. First order ordinary Differential Equation Solver

The first order ordinary differential equation solver is accessed with the ODE operator. It employs the Zienkiewicz two- and three-level schemes [Ref. 4. 5].

In addition to the time step size change using the DTIM operation, an optional automatic time step adjustment is incorporated in the ODE operation. The norm of the difference between temperature vectors at two consecutive times is computed at each step. If the norm is less than a user specified maximum temperature difference, the time step is doubled before going to the next step. If the norm is greater than a user supplied minimum temperature difference, the time step is halved and calculation for that time step is repeated until the norm is acceptable. If the temperature differences are specified as zero, no time step adjustment will be performed.

The user specifies one of three functions which are performed by the ODE operation. A second operation rame, which must be separated by a comma, follows ODE. The options are INIT, LINE or QUAD.

The operation ODE, INIT is used to input the integration constants theta, beta and gamma [Ref. 5], the maximum and minimum temperature differences for the automatic time step adjustment and the initial temperature vector. No time integration is performed by this instruction.

ODE,LINE performs the two point scheme and the current temperature vector is substituted by the newly calculated temperature vector.

The ODE,QUAD operation is similar to the ODE,LINE operation but uses the three point scheme.

6. Printing №dal Temperatures

Once the temperature vector has been updated, the PTEMP operation prints the temperatures in node number order.

III. ORG ANIZATION OF GRAPHICS GRODP

The graphics group is capable of displaying meshes either on the IBM 3277 dual screen terminal system or any PLOT-10 compatible terminal. It is initiated through the use of the GRAPH operation by which the user specifies the type of graphics terminal in use.

A. TITLE

The TITLE operation is used to title the mesh being displayed. The user may input up to three lines of fifteen characters for the title. This operation must be specified immediately prior to the displaying operation.

This operation calls the USRIN subroutine which reads from the terminal three lines of characters. A flag (IFLAG) is set to indicate a title is to be printed.

B. HEAT TRANSFER MESH

The PLHX operation locates the heat transfer coordinate and connectivity arrays and displays the mesh. The viewing area is optimized so the longest dimension is full screen. The maximum and minimum coordinate values for each direction are displayed. This operation displays two- and threedimensional meshes. If the mesh is three-dimensional, the user must specify the viewing plane.

This operation calls either the FPPLOT (2-D) or FP3PLT (3-D) subroutine. These subroutines scan the coordinate arrays for maximum and minimum values and initialize the graphics screens. They both use subroutine BOX to set the virtual window, set the screen window and draw a box around the plotting area. The standard element connectivity is
storedin an array which is used in conjunction with the user's element connectivity matrix to draw the elements line by line. The center node is plotted using a "+" symbol. The user's title is plotted (if IFLAG is not 0) by subroutine USRTIT. Which then resets IFLAG. The maximum and minimum values of the vertical and horizontal coordinates are printed by SCRDAT. Subroutine SCRDAT also indicates axis orientation. prior to terminating the screen graphics, subroutine TITLE is used to write the title box identifying the type of mesh being displayed.

C. STROCTURAL BESH

The PLST operation displays the structural system specified by user supplied coordinate and connectivity arrays. The viewing area is optimized as lescribed for the pLHX operation. Likewise, the user may specify the viewing plane as either the $X-Y, Y-Z$ or $X-Z$ plane.

This operation calls the CLPLOT subroutine. CLPLOT uses the same logic and subroutines as PPPLOT. The difference between the two subroutines is in the method of storage of the coordinate arrays and the connectivity matrix.

IV. CHANGES TO EXISTING GROUPS

Modifications were made in several existing subroutine groups to make their operations more versatile. one utility subroutine was improved and one was added.

The changes that were made are sensitive to prior versions of CAL. The same results are obtained for previously existing operation commands. No files used with other editions of CAL need to be modified to operate with this program.

A. OTILITY SUBROUTINES

1. Subroutine RCARD

Subroutine RCARD reads and interprets the operation commands. An operation command has the form
OP,M1,M2,M3,M4,M5,N1,N2,N3,N4
where $O P$ is the operation name, $M 1$ to $M 5$ are matrix names and N1 to N4 are integers. Previously, N1 to N4 had to be values greater than or equal to zero. The symbol/state logic matrix and subsequent action codes were modified to allow users to input negative integer values.

This is important, for the zERO operation which enables users to create matrices with a given value in the diagonal locations and another value in the off diagonal locations. Prior to this change, a user desiring to create such a matrix with negative values had to input the matrix Iow by row.
2. Subyoutine FRTCMX

Subroutine PRTCMX is a new utility subroutine which allows the $C A L$ program to invoke most CP/CMS commands.

After the invoked command is executed, control returns to CAL .

It is presently used in the SAVE and RESUME operations to invoke the CMS command

FILEDEF NSAVE DISK M1 SAVE (RECFM ∇ S LRECL 7290 BLKSIZE 7294)
where NSAVE is a logical unit number assigned to the SAVE and RESOME operations and M1 is a user input file name.

B. GROUP 1

1. SAVE Operation

The save operation creates a file on the user's A-disk containing all arrays in storage at the time of issuance. Previously the entire 100,000 word main array was stored. regardless of how many words were actually being used. It was always stored under the name FIIE 02, preventing the user from saving more than one problem.

The method of storing the array was changed to store just the number of locations actually being used. More than one problem may be saved because the subroutine FRTCMX was used to create a SAVE file with a name assigned by the user. If a name is not specified FILE 02 will be the name of the saved problem.

2. RESUME Operation

The RESOME operation reads a saved file into memory. It was altered to read named files saved by the new SAVE operation. If a name is not specified FILE 02 will be read.

3. LOADI Operation

The LOADI operation loads integer arrays. The arays were input row by row. The option to generate arrays was added. The user may specify one row and a row generation
vector. The number of rows specified will be automatically generated. This operation was moved from the static analysis subroutine group to the general matrix comand group.

4. PRINT Operation

The PRINT operation prints an array in matrix format. previously it could only print arrays containing real numbers, resulting in the erroneous printing of arrays containing integers. The user may now specifiy whether the array to be printed contains real or integer values.

5. HELP Operation

The HELP operation was added to the general command group and provides the user with information on the use of all the available operations. It accesses a file of instructions, sorts through them to find the desired operation and displays the appropriate information on the screen.

C. GROUP 2

1. NODES Operation

The NODES operation creates the matrix of nodal coordinates for a structural problem. This information was entered in cartesian coordinates, node by node.

The user may now opt to enter data in cartesian, cylindrical (any axis longitudinal) or spherical coordinates. It will be converted to the cartesian coordinate system used by CAL. Additionally, the user may generate new nodes by specifying one node and a node generation vector.

D. SOLOTION OF CONDOCTION HEAT TRANSFER PROBLEMS

In order to solve a conduction heat transfer problem, the user must provide the solution algorithm to CAL. A discussion of the matrix manipulation and equation solving techniques can be found in Reference 4 . This chapter will present possible algorithms for solution of this class of problems.

A. Steady state problems

These problems take the form:

$$
\begin{equation*}
[K]\{T\}+\{F\}=\{0\} \tag{2}
\end{equation*}
$$

1. Linear Heat Conduction Problems

This is the simplest case to consider. After inputting mesh data, the user must form the conductivity matrix [K], (SYMC) and the load vector \{F\}, (FORM). Then the nodal temperatures must be calculated (CALC) and printed (PTEMP).

Consequently the sequence of solution operations for this type of problem would be: SYMC
FORM
calc
PTEMP
2. Non=linear Heat Conduction problems

Since the conductivity matrix is time dependent on temperature, an iterative algorithm must be used. This requires a looping operation (LOOP, NEXT) around the linear steady state sequence.

The solution operations may be:
LOO P, N1
SYMC
FORM
CAL C
PTEMP
NEXT
where $N 1$ is the user's guess of the number of iterations necessary to obtain equilibrium. However, the program maintains an internal check on the residuals. When they decrease below the predefined tolerance (TOL command, default is 10^{-9}). the looping operation is terminated upon the subsequent NEXT command.

B. TIME DEPENDENT PROBLEMS

These problems involve the full form of equation (1):

$$
\begin{equation*}
[K]\{T\}+[C]\{\dot{T}\}+\{F\}=\{0\} \tag{1}
\end{equation*}
$$

1. Linear Heat Conduction Problems

This case requires the solution of a first order ordinary differential equation (ODE). Additionally a heat capacity matrix, [C]. must be formed (CCAP or LCAP) and a time step provided (DTIM).

The differential きquation solver is accessed using the operation ODE,M1 where M1 is one of the following:

INIT to specify initial temperature vector and
the integration constants
IINE to perform the two-time level algorithm
QUAD to perform the three-time level algorithm
The heat capacity and conductivity matrices are unchanged in a linear problem and must be placed outside the loop. The load vector is reformed every time step and the
time must be advanced with aDTIM. These operations are included in the loop.

The sequence of operations to solve a linear time dependent problem may be:
DTIM
ODE, INIT
SYMC
CCAP (or LCAP)
LOOP, N1
FORM
ODE.LINE (OI QUAD)
ADTIM
PTEMP
NEXT
where $\mathbf{N 1}$ is the number of time steps the user wants to take.
2. Non=linear Heat Conduction problems

The heat capacity andor conductivity matrices are temperature dependent in this class of problem. The temperature dependent matrix (matrices) must appear inside the looping operation whereas the constant property matrix would be excluded from the loop.

To solve a fully non-linear problem the following operation sequence may be used:
DTIM
ODE, INIT
LOOP, N1
SYM C
CCAP (or LCAP)
FORM
ODE.LINE (or QUAD)
ADTIM
PTEMP
NEXT
where N 1 is the number of time steps the user wants to take.

C. NOMERICAL EXAMPLES

1. Hollow Cylinder with Circumferential Heating Strips

A hollow cylinder with a four inch outer diameter and a three inch inner diameter was subjected to an axial forced connvection condition in a wind tunnel by Professor P. F. Pucci of the Naval postgraduate School. There were sixteen one-quarter inch wide heating strips equally spaced over 180 degrees of the outer surface as illustrated in Figure 1.

The heating strips were maintained at a constant temperature of 1600 F and measurements of the surface temperatures between the strips were made using teledeltos paper. The ambient temperature was 600 F . The cylinder was considered to have a density of $70 \mathrm{lb/ft} 3$ and a specific heat of $0.6 \mathrm{BTO} / 1 \mathrm{bm} 0 \mathrm{~F}$. Tests were made with four heat transfer coefficients (h).

The finite element model took advantage of the cylinder's symmetry, consisting of one half of a heating strip plus one half of the interval between strips. The element mesh,as generated by the plHX operation, is shown in Figure 2. The comparison of the model data to the teledeltos paper measurements was very favorable and is shown in Figure 3.
2. Transient Surface Temperatures in an Infinite plate

An infinite flat plate was considered as a test problem (Figure 4). The plate was at an initial uniform temperature greater than the ambient temperature and then exposed to convection conditions with a constant external heat transfer coefficient (h).

The approximate solution was obtained using a Heisler chart. The temperature of the outer wall was computed at 1 minute, 5 minutes and every 5 minutes there
after up to 30 minutes. The comparison between these values and those generated by CAL was very close and is shown in Figure 5.

VI. CONCIOSIONS AND RECDMMENDATIONS

The code that was integrated into CAL provides an accurate and reliable means for solving a variety of conduction heat transfer problems. The system is user friendly both in prompting for input and detecting errors. The use of the heat transfer group of commands is encouraged, as well as efforts to increase its versatility.

While the capabilities of the program are significant, there is room for improvement. The present version uses primarily an in-core solution technique. which restricts the problem size to within the user's virtual machine space. The capacity to handle larger problems may be increased through the use of an out of core technique for building and storing the conductance and capaitance matrices, as well as equation solving.

The graphics package could be expanded and improved to provide more information to the user. The plotting of isoparametric elements neads to include the capability to generate and plot curved lines. Another desirable capability is to portray all three axes on the screen with apparent depth and allow rotation to any desired view. A capabilty to plot isotherms could be added to enhance the interpretation of the results.

$\rightarrow|13 / 64|_{-5 / 64}$

Hollow Cylinder

Figure 1.

Figure 2. Graphic Display

Infinite Slab
Figure 4.

APPENDIX A

USER'S GUIDE

This appendix provides details on the use of cAL with the IBM 3033 computer at NPS. The program as modified at the Naval postgraduate $S c h o o l$ is subsequently referred to as CAL-NPS. Section A provides the details on the command structure. Section B is a summary of commands available. Section C provides the job control language for executing the program in both the batch and interactive modes at NPS. Section D contains detailed specifications for each available command. Finally, section E gives direction for solving larger problems with CAL-NPS. The majority of this appendix was originally published as Reference 1 . The author wishes to express appreciation to professor Wilson for permission to use this material.

A. FORM ARD RESTRICTION OF THE LANGOAGE

CAL-NPS is an interpretive language which is designed to manipulate arrays and matrices, to perform standard structural analysis operations and to perform conduction heat transfer analysis operations. A CAL-NPS program run involves the reading of the input deck once and executing the commands designated by the operation cards as they are encountered. Looping operations allow a sequence of commands to $b \in$ executed more than once.

The input deck is composed of operation cards and data cards. The data cards directly follow each operation card which requires data (see Loop operation for exception to this). The operation card contains the name of the operation to be executed, names of arrays associated with the
operation and integer constants. Examples of the general form of this card are:

$$
\begin{aligned}
& O P, M 1, M 2, M 3, M 4, M 5, N 1, N 2, N 3, N 4 \text { comments } \\
& O P, M 1, N 1, N 2 \\
& O P, N 1 \\
& O P
\end{aligned}
$$

in which $O P$ is the name of the operation to be executed. Mi is the name of an array and $N i$ is an integer. The names of OP or Mi are one to eight alphabetic or numeric characters to be selected by the user. The first character of a name must be alphabetic. The sequence of terms $O P, \quad M i$ and $N i$ must be separated by commas. Characters following a blank will be printed as comments in the output from the program run.

If an operation attempts to load or generate an array which previously existed, the program will delete the array before the execution of the operation. A new array need not be the same size of the old array which had the same name.

B. SOMMARY OF COMMANDS

1. General Commands

; indicates a significant change or addtion in CAL-NPS

START	- Initialize for the next problem
STOP	- Normal termination
NO	- Temporary suppression of output
YES	- Restores output
LABEL	- Print comments
READ	- Change logical device for input
WRITE	- Change logical device for output
TIME	- Suppress time printout
SAVE	- Interrupt a problem
RESOME - Continue an interrupted problem	
LIST	- List arrays andstorage used
HELP	- ACcess HELP files

2. General Matrix Commands

LOAD - Load user defined real matrix
LOADI - Load user defined integer matrix
ZERO - Create null or unit matrix
PRINT - Matrix print operation
DUP - Matrix duplication
ADD - Matrix addition
SUB - Matrix subtraction
MULT - Matrix multiplication
TRAN - Matrix transpose
SCALE - Multiply a matrix by a scalar
SOLVE - Solution of linear equations
DUPSM - Form sub-matrix from large matrix
STOSM - Store sub-matrix in large matrix
DUPDG - Porm row matrix from diagonal
STODG - Store Iow on diagonal
Max

- Evaluate row maximums

NORM - Evaluate matrix norms
INVEL - Invert each term in matrix
SQREL - Square root of each term in matrix
LOG - Natural log of each term in matrix
PROD - Evaluate product of all terms in a matrix
DELETE - Delete matrix from storage

3. Static Analysis Operations

NODES - Input structural joint geometry \%
BOUND - Specify boundary conditions
BEAM - Form 3-D beam stiffness matrix
TRUSS - Form 3-D truss stiffness matrix
PLANE - Form 3 to 8 node plane stiffness matrix
SLOPE - Form stiffness matrix from slope/deflection eq.
FRAME - Form 2-D frame stiffness matrix
LOADS - Form load vector
ADDSF - Form global stiffness and mass matrices
ADDK - Add element matrix to global matrix
MEMFRC - Calculate element forces from joint displacements
DISPL - Print joint displacements
FORCE - Evaluate and print member forces
4. Dynamic Analysis operations

FUNG - Generate equal interval time function
STEP - Integrate dynamic equilibrium equations
EIGEN - Evaluate mode sha pes and frequencies
DYNAM - Evaluate uncoupled equations of motion by mode superposition method
PLOT - Line printer plot of joint time history
5. Heat Transfer Operations

HTXFR - Initiate heat transfer problem
COORD - Input nodal coordinates
ELCON - Input element connectivity matrix

PRO P	- Input material property data	3
CTEMP	- Input constant temperature node data	*
PRO F	- Establish profile of equations	,
SYMC	- Create symmetric conductance matrix	3
USYMC	- Create unsymmetric conductance matrix	*
LCAP	- Create lumped capacitance matrix	4
CCAP	- Create consistent capacitance matrix	*
FORM	- Create flux vector	3
CALC	- Solve time independent systems of equations	A
ODE	- Solve time dependent systems of equations	\%
PTEMP	- Print nodal temperatures	*
TOL	- Set solution convergence tolerance	荸
CON V	- Perform temperature convergence test	\%
DTIM	- Set time step increment	*
ADTIM	- Advance time by one time step	*
PROMPT	- Suppress/restore prompts	*
6.	Graphics Operations	
GRA PH	- Initiate graphics	\%
TITLE	- Label mesh plot	3
PLHX	- Plot heat transfer mesh	\%
PLS T	- Plot structural mesh	\%
7.	Loog Operations	
LOOP	- Start of loop	
NEXT	- End of loop	
SKIP	- Conditional skip of operations within loop	
	Names Available for User Subroutines	
USERA		
USERB		

USERB

For the time sharing (CMS) system at Naval Postgraduate School. do the following:
_(Use the standard LOGON procedue)
_link 0040P 191199
ENTER PASS WORD:
_XXXXX (ESAN)
R; $T=0.01 / 0.01$ 11:09:55
_access 199 C (Note: You must access the "C"
C (199) R / O disk)
R ; $\mathrm{T}=0.01 / 0.01$ 11:10:04
_cal
ENTER TERMINAL CODE:
1 = PLOT- 10 Compa tible Terminal (GRAPHICS)
$2=I B M 3277$ DUAL SCREEN (GRAPHICS)
3 = Any Alpha Numeric Terminal (NO GRAPHICS)
_ 1 (or 2 or 3, as appropriate)
(The computer responds with several lines of procedure) EXECUTION BEGINS \qquad
(You are now under the control of CAL-NPS)
start
START
(Your own CAL-NPS program is inserted here)
stop

* F STOP

R : $\mathrm{T}=0.01 / 0.01$ 11:12:45
_log (Terminates session)

D. CAL-NPS COMMAND SPECIFICATIONS

1. General Matrix Operations

CAL-NPS has most of the standard matrix operations plus some special array operations which are useful in engineering analysis. The following is a list of approximately 32 operations which are used for control and general matrix manipulation.

A $1+1$ indicates the formation of a new matrix. A matrix previously defined with the same name will be deleted. A "-" indicates modification of an existing matrix.

Note: Whenever the expression "card" is used it is meant to also stand for "instruction" in interactive mode.

START

This operation eliminates all arrays which were previously

STO P

This operation causes normal termination of a CAL-NPS program.

NO

YES

These oferations are used to selectively suppress output except diagnostics, until the operation yES is encountered. Therefore. in subsequent runs of the same CAL-NPS programe these cards are inserted in the data deck.

LABEL, N1

This operation will read and print Ni comment cards which interpreted as a standard carriage control symbol (in.e. 0 for double space and 1 for skip to the top of the next page).

THIS OPERATION
IS VALID ONLY WITH THE CP/CMS TIME SHARING This Operation permits the selection of a user's file or the
 FILE FTOUFOO1 on the user 's A-disk. if NT is 5 , the terminal will be restored as the input file device. All disk files prepared for use with this command should end with either STOP or READ.5. This command will not be executed on the MVS (batch) system.

WRITE,N1

THIS OPERATION IS VALID ONLY WITH THE CP/CMS TIME SHARING SYSTEM. This Operation permits the selection of a file on the user's A-disk or the terminal as the output file device. The default is the terminal and all arror messages will be printed at the terminal regardless of the output file device sel ected in If N1 is 8 , subsequent ouput will be written into FILE FT08F001 on the user's A-disk. If N1 is 6. the terminal will be restored as the output file device. This command will not be executed on the MVS (batch) system.

TIME

This operation permits the time printout to be suppressed without loss of other output. A second. TIME will restore the time printout unless the print output is suppressed with the No command.

SAVE or SAVE,M1 or SAVE,M1,N1

This operation saves all a rrays in storage at the time of issuance. Saved arrays wi 11 contain all modifications made since their creation. Mi and $\mathrm{Ni}_{\mathrm{ar}} \mathrm{are}$ optional and if not included, the arrays will be stored in PILE 02 on the user's A-disk. The saved files will be assumed to be for general matrix manipulation ora structural problem. M1 is the file name (up to six letters) under which the user wishes to store the arrays. The file type will be SAVE. If N1 is 1. a general mat =ix manipulation or structural problem is being saved. If $N 1$ is 2, a heat transfer problem is being saved.

RESUME Or RESUME,M1 or RESUME,M1,N1

This operation reads a sayed file into memory. Any arrays currently in storage will be destroyed. A file must have been previously created on the user s A-disk using the SAVE
operation.
Mi manipulation or structural problemed to be a general matrix assigned to the saved file on the user's A-disk. The file type must be save pif Ni is 1 heat transfer problem is be ing resumed.

[^0]LOAD, ${ }^{+} 1, N 1, N 2, N 3$
This operation will load an array of real numbers named M1 which has N1. rows and N2 columns. The terms of the array are punched in row-wise sequence on data cards following this operation. N3 is optional. If N3 is zero or blank. the cards are punched in (8F10.0) format. If N3 is one, an additional card which contains the format of the data cards must preceed the data in Por example pif the data is to be 4 numbers per card in fileld widthsof onting the additional card nine, the data cards will be read in free format.

LOADI,M1,N1,N2,N3,N3, OF
This operation will load an integer array named M1 which has N1 rows and N2 columns: The terms of the array are punched in row wise sequence on data cards following this operation. M2, N3 and N4 are optional. If N3 is zero or blank, the data must be punched in (16I5) format. if N3 is one. an adai tional card containing the format of the data cardsmust follow this operation and preceed the data fara for example, if the additional card would contain: (4I10). If N3 is nine, the datawill be read in free format. If the letters "INCR" are placed in the position of M2, this operation has an increment generation capability. Datámust be entered as follows:

Item	Contents
1	Rownumber
2	Value 1
3	Value 2

$$
\begin{aligned}
& \text { etc. } \\
& +1
\end{aligned}
$$

N2+2 Generation code
If the generation code is not zero, the next card must contain the following

Item	Contents
1	Row number increment
2	Value 1 increment
3	Value 2 increment

$$
\begin{aligned}
& \text { N2+1 } \forall \text { alue N2 increment } \\
& \text { N } 2+2 \text { Last row to be generated }
\end{aligned}
$$

ZERO, M1,N1,N2,N3,N4

A real matrix named M1 is created with N1 rows and N2 columns. The terms in this matilx will have the following values:

Therefore this operation aan be used to form null or unit matrices.

DUP, M1, $\stackrel{+}{\text { M }}$
This operation will form ${ }^{3} n$ array named M2 which is identical to the array named M1.

ADD, M 1, M2
This operation will replace matrix M1 with the sum of the matrices M1 and M2.

SUB, 두 1, M2
This operation will replace matrix M1 with matrix M1 less matrix M2.

MOLT, M1, M2, ${ }^{+} 3$
 product of matrices M1 and M2, or M3 = M1rsM2.

TRAN, M1, $\stackrel{+}{M} 2$
This operation generates a new matrix M2 which is the transpose of matrix M1.

SCALE, M $1, M 2$
This operation replaces each term in the matrix named M1 with the term multiplied by the term $M 2(1,1)$ of the matrix

SOLVE, M1, M2,N1,N2 or SOLVE, M1,M2,N2 or SOLVE, M1,N1,N2 or

Abstract

If $N 1=0$, this operation solves the matrix equation $A X=B$. Mitis the name of the Amatrix and Ma is the name of the B If N1=3 MACES ONLY. If $N 2=0$ or blank, matrix A is symmetric. If $N 2$ is nonzero the matrix A is not symmetric. For symmetric matrices, A is factored into the LDL form. The diagonal D matrix is stored on the diagonal of A. The parameter N2 permits the diryct solution of non-symmetric systems of equations. If N2is not equal to zero. an Lu replacement of M1 by its inver se is available for the nonsymmetric case. Instead, use the ZERO operation to create Sn identity matrix M2 of the same order as M1 inverse of the matrix A.

DUP SM, M1, ${ }^{+} 2, N 1, N 2, N 3, N 4$
This operation forms a new submatrix named M2 with N3 rows and $N 4^{\text {colums from the terms within the matrix named Mi. }}$ The first term of matrix M2, M2 $1, \overline{1}$, will be from row Ni and column N 2 of matrix m1. or m1 (N1, N2).

STOSM, M1, M2,N1,N2
This operation stores a submatrix named $M 2$ within the matrix named M1: The first termof the submatrix M2 will be stored at Iow Ni and column N2 of matrix M1. The terms within the area of M1 in which M2 is stored will be destroyed.

DUP DG, M1, $\stackrel{+}{M} 2$
This operation forms a new matrix named m2 from the diagonal terms of M1.

STODG, M1,M2
This cperation stores a row or column matrix named M2 at the diagonal locations of matrix M1.

MAX, M $1, \stackrel{+}{M} 2$
This operation forms a column matrix named M2 in which each row contains the maximum absolute value of tho corresponding row in matrix M1. The maximum and its column number is printed for each row.

NORM, M1, $\stackrel{+}{M} 2, N 1$
If N1 $=0$ a row matrix named M2 is formed in which each column confains the sum of the absolute values of the corresponding column of matrix M1. If N1 is not equal to o a row matinx named M2 is formed in which each column contains the square root of the sum of the sguares of the values of the corresponding columns of matrix 1 .

SQREL, M1

This operation replaces each term in the matrix named M1 with the square root of the term.

LOG , $\bar{M} 1$

This operation replaces each term in the matrix named M1 with the natural iog of the term.

PROD,M1, $\stackrel{+}{M} 2$

This operation forms a 1×2 array named m2 which contains the product of all terms in the matrix named
product, $X_{\dot{X}}$ is ptored as two numbers of the form:
in which $M 2(1)=P$ and $M 2(2)=E$, the exponent.

DELETE, $\bar{M} 1$

This operation will cause the elimination from storage of the array named M1.

CMS.N 1
This operation allows the user to issue CMS commands while under the controi of Cai-NPS. In general a command that reloads the virtual core will not be allowed. Examples are FORTHX, SCRIPT, XEDIT, an Y language prccessor, SORT, and other large system modules such as COPYFILE and MOVFILE. N1 is the number of words in the command (1 =o 9 are allowed). Note that a parenthesis. " " " or "" "is counted as a word. All words must be left justified.
The user will be prompted for each word. If this operation is used in an FTOAFOOTFILE, each word iust be on a separato
2. Static Analysis Operations

The purpose of this series of operations is to form the total stiffness and diagonal (lumped) mass matrices for systems of two or three-dimensional elements. For threedimensional analysis there are beam and truss elements available. For two-dimensional analysis, there is a frame element, a slope/deflection element for beams, and a 4 to 8 node isoparametric finite element available.

After the creation of an array containing the coordinates of the joints of the system, the specification of displacement boundary conditions, the tabulation of material and section properties, the mass and stiffness matrices are formed for each structural member and placed in sequence on low speed storage along with the global equation numbers which are associated with their stiffness terms. In addition, the member force-displacement transformation matrices are formed and stored on a separate low speed storage file along with the appropriate displacement numbers.

The NODES operation is used to specify or generate the geometry of the system. The operation BOUND specifies which joint displacements exist and assigns internal equation numbers to these displacements. Therefore, each joint may have from zero to six displacement degrees of freedom. Tables of material and section properties for the various members are loaded and printed as standard arrays of informaさion.

A special operation, ADDSF, is used for the direct addition of element stiffnesses to form the total stiffness and diagonal mass matrix of the system. The ADDK operation may be used to add individual elements into the total system matrices. The LOADS operation specifies the concertrated joint loads for all load conditions. After the direct solution for joint displacements due to static or dynamic loads,
the member forces can be evaluated using the MEMFRC operation. The DISPL operation is used to print the displacements in joint number order.

NODES, $\stackrel{+}{M} 1, N 1$ or NODES $\stackrel{+}{M} 1, N 1, N 2$
 format as follows:

Item	Contents
1	Nodenumber
2	X coordinate
3	Y-coordinate
4	Z-coordinate

If $N 2=1$, there is a join \quad generation and coordinato system conversion capability. Data must be entered in free format as follows:

Item	Contents
1	Nodennmber
2	X-coordinate
3	Y-coordinate
4	Z-coordinate
5	System type
6	Generation co de

System type refers to the system used when inputing the system for use by CAL-NPS.

The input data is the same as above with the following correspondence:
$\begin{array}{cc}\text { Cylindrical } & \text { Spherical } \\ 0 & 0 \\ \theta & \phi \\ 2 & \theta\end{array}$
If the gen eration code is not zerod the next card is a
 formatted as follows:

Item	Contents
1	Node number increment
2	X increment
3	Y increment
4	2 increment
5	Last node number to be generated.

It is assumed that the increments pertain to the same system of refer \in nce as the preceeding card. This operation must be terminated by a line of alternating zeros and blanks.

BOUND, $\stackrel{+}{M} 1$
This operation specifies the displacements which are nonzero for the structural system of joints specified by the NoDES operation. Where:

M1 = Name of boundary condition code array to be
This operation is followed by a series of cards containing the following information in Eree format:
Item Contents

1 Node number for the first node in a series of nodes with identical displacement specification.

2 Node number f cr the last node in the series.

3 X-translation
4 Y-translation
5 Z-translation
6 X-rotation
7 Y-rotation
8 Z-rotation
9 Node number increment used to generate
Atranslation or rotation equals: (a) zero for zero or undefined displacements, or (b) one for nonzero displacements to be evaluated by other operations.

If a node boundary condition is not specified, all displacemen ts at that node are assumed zero. ciards may be supplyed in any order. If node boundary conditions are specified more than once, the last definition is used. This sequence of data must be terminated by a card of alternating zeros and blanks.

The selection by the user of which nodes have nonzero
displacments requires an understanding of the direct stifite
ness procedure. \quad displacement degrees of freedom which have ness procedure. displacement deqrees of freedom which have considered to be undefined since it is not possible to develop an equilibrium equation for that direction on the total number of nonzero displacements specified will be the ADDSF operation.

BEAM, ${ }^{+} 1, \mathrm{M} 2, \mathrm{M} 3, \mathrm{M4}$
This operation calculates the element stiffness, mass and members. These arrays are stored in sequence on low speed storage to be used by other operations where:
M1 is the name of the beam element group
M2 is the name of the coordinate array
M3 the name of the boundarycondition array
is the
is the name of the array which contains bead
properties and has been loaded by the standard
matrix LoAD operation

Ore card for each beam in this group of beam elements must
follow this operation. format, where:

Contents
Beam identification number
Node number I
Node number J
Beam property number NP
This sequence of cards must be terminated with a card of The material and geometric properties for each element are given in the M4 array in the following order:

Where NPis the specific material property number specified in item 5 of the beam card. The local sign convention is given in the following figure.

DEFINITION OF POSITIVE BEAM FORCES

TRUSS. $41, \mathrm{M} 2, \mathrm{~B} 3,44$
This operation forms the el ament stiffness mass and forcedisplacement transformation matrices for 3-D truss members. The arrays are stored on low speed storage in sequence and will be used by other structural operations.

This

This operation is followed by one card per truss member in free format with the following information:

Item	Contents
1	Truss member identification number
2	Joint number
3	Joint number J
4	Section property number, $N P$

This operation must be terminated by a card of alternating zeros and blanks.

FRAME, $\stackrel{+}{4} 1, \stackrel{+}{4} 2$
This operation forms the 6 x 6 stiffness matrix for the two -dimensional frame member shown below.

FRAME MEMBER

The properties of the member are defined on one cards immediately following the FRAKE operation card. ther fis second card is punched in free format and contains the following information:

```
Iten Contents
```


CEDMETRY AND JOINT DISPLACEMENTS

$M 2$ is a 3 x 6 force-displacement transformation matrix which is based on the positive definition of the element forces shown below.

These forces can be calculated from the following matrix equation with the MEMFRC operation.

$$
\left[\begin{array}{c}
M \\
M \\
P
\end{array}\right]=[M 2]\left[\begin{array}{l}
U_{x 1} \\
U_{y 1} \\
U_{21} \\
U_{x 1} \\
U_{y 1} \\
U_{01}
\end{array}\right]
$$

SLOPE, ${ }^{\text {H }} 1$
This operation forms a 4 a stiffness matrix ${ }^{\text {m }} 1$ for a bean or column member from the classical slopeqeflection equa
 Eion:

The sign convention is defined as follows:

The member forces are defined in terms of joint displace-
ments $b y$ fhe following slope deflection equations.

$$
\begin{aligned}
& M_{1}=\frac{E 1}{L}\left[4 \theta_{1}+2 \theta_{2}-\frac{6}{L}\left(\nu_{1}-U_{2}\right)\right] \\
& M_{2}=\frac{E 1}{L}\left[2 \theta_{1}+4 \theta_{2}-\frac{6}{L}\left(u_{4}-\nu_{2}\right)\right] \\
& V_{1}=-V_{2}=\frac{M_{1}+M_{2}}{L}
\end{aligned}
$$

PLANE,M1,M2,M3,M4,N1,N2
This operation calculates the element stiffness,mass and stress-displacement transformation matrices for 4 to 8 node isoparametric elements (Y-z plane only\} - These arrays are stored on low speed storage wo be used later by other operations (i.e.. ADDSF and FORCE). The arguments are defined as

$N P$ is the material identification number.
N1 and N2 are the number of integration points in the r and s directions respectively.
One card for each 3 to 8 node element in the group must follow the operation card. The cards are punched in free format and contain the folicwing information:

Item	Contents Element identification number
2	Node number N1
3	Node number N 2
4	Node number N3
5	Node number N 4
6	Node number N 5
7	Node number N 6
8	Node number N7
9	Node number N 8
10	Material identification number, NP
11	Natural coordinate of stress output rl
12	Natural Coordinate of stress output sl
13	Natural coordinate of stress output r2
14	Natural Coordinate of stress output s2
15	Natural coordinate of stress output r3
16	Natural Coordinate of stress output s3

N4 through N8 are optional but zeros must be inserted for them if unused. Themidside nodes, if present. must be within the center half of the side. The iocal numbering system for the elementis shown in the following figure.

ISOPARAMETRIC ELEMENT

Stresses will be printed by the FORCE operation at the three points defined in items 11 through 16. The forces are

LOA DS . $\stackrel{+}{\mathrm{M}} 1, \mathrm{M} 2, \mathrm{~N} 1$
This operation forms a load matrix named M1 of N1 columns (N1 load conditions) where M2 is the name of the boundary condition array generated by the operation BOUND. for This operation is followed by a series of cards one for each loaded joint for each load condition. These cards are punched in free format as follows:

This series of cards must be terminated by row of alternating zeroes and blanks.

ADDSF. $\stackrel{+}{M} 1$ or ADDSF, $\stackrel{+}{M} 1, \stackrel{+}{M} 2$

This operation forms the total stiffness matrix named M1 and the lumped massmatrix named M2 for the structural system stored on low speed storage. These matrices. can be printed with the PRINT operation. If M2 is not specified. mass matrix M2 will nct be formed.

ADD K, $\bar{M} 1, M 2, M 3, N 1$
This operation adds the ele ment stiffness matrix named m2 to the total stiffness matrix named mi. Wheremp was previously integer array in which the column number Ni contains the roy or column numbers in the total stiffness matrix where the element stiffness terms are to be added.

DIS PL, M1,M2
This operation prints the displacement vector named $M 1$ in joint sequence order, where m2 is the name of the boundary condition array.

MEMFRC, M1, M2, M3, M 4 , N 1
This operation multiplies the element stiffness matrix named name of the integer array in which the column number N1 contains the rownumbers in the displacement matrix. M2, which are to be multiplied by the element stiffness (of plication are stored in thé array named M4.

FORCE,M1,M2, $\stackrel{+}{M} 3$ or FORCE,M1,M2
This operation calculates the member forces for a group of
elements in which M1 is the name of the element group
M2 is the name of the displacenent matrix
M3 the name of the matrix in which the forces are
is the ned in the order calculated. If M3 is not specified, the element forces will be printed element only the member axial force. \bar{f}. will be calculated for each member. For the BEAM element. eight forces will be printed with reference to the positive definition shown in the BEAM operation.
3. Dynamic Analysis operations

The following operations were designed to evaluate the dynamic response of structures subjected to arbitrary time-dependent loads. If these operations are used in connection with the standard matrix operations and the structural analysis operations, a dynamic analysis is a relatively simple procedure. The user has the option of using the mode superposition method or a direct step-by-step integration of the dynamic equations of motion. The user may examine the spectra of both input loading and calculated displacements. In addition, the contributions of the individual modes may be evaluated and compared.

The most common and convenient form for timedependent data to be specified is as straight line segments between given time points. Therefore, an operation which generates values at equal intervals is necessary. Another common characteristic of time-varying loads on structures is that it is normally possible to represent the loads at all points on the structure by the product of two matrices, a column matrix indicating the spatial distribution of loads times a $=0 w$ matrix which indicates the values as a function of various times. If a more complicated loading is required, it is possible to perform more analyses, each within the restrictions of the program, then add the results of each analysis.

The following operations have been added for the major purpose of performing dynamic analysis.

FUNG, Ml, $\stackrel{+}{H} 2, H 3, N 1, N 2$
This operation generates matrix named ma which contains values at equal intervals of the function specified in the array named 1. The ar lay 1 . u st be a 2 by k array of the form:

$$
\left[\begin{array}{lllll}
& 1]
\end{array}\right]\left[\begin{array}{lllll}
t_{1} & t_{2} & t_{3} & \ldots & t_{k} \\
f_{1} & f_{2} & f_{3} & \ldots \ldots & f_{k}
\end{array}\right]
$$

Which numerically represents a function of the form shown below:

$F(T)$

The time interval t is specified in the 1 by 1 matrix named M3. N1 specifies the total number of values to be generdated, and is the number of columnsinnw2 ul us No be gen er-
 be a $2 x$ N1 matrix of the following form:

$$
\left[\begin{array}{l}
\text { L }
\end{array}\right]=\left[\begin{array}{cccc}
t_{1} & t_{1}+\Delta t & t_{1}+2 \Delta t & \cdots \\
f_{1} & f\left(t_{1}+\Delta t\right) & f\left(t_{1}+2 \Delta t\right) & \cdots
\end{array}\right]
$$

STEP, M1, M2, M3, M $4, \stackrel{+}{M} 5, M 6, M 7, M 8, N 1, N 2$
This operation calculates the dynamic respcnse of a structural system using direct step-by-step in
$[M]\{U\}+[C]\{U\}+[K]\{U\}=R(t)=P F(t)$
Where:

M5 is the name of the N by N2 matrix of calculated dis the name of the $\mathrm{N} \times \mathrm{x} 1 \mathrm{~N}$ load distribution matrix
M7 is the name of the $1 \mathrm{x} k$ Iow matrix. representing the loadmultipliers at equal time increments
$M 8$
$N 1$
$N 2$ Pr where $k=N 2 / N 1$
$i s$ the name of ine 1 x 1 matrix containing t
is the output interval for the displacements
is the total number of displacement vectors to
be calculated.

The total time for which results will be calculated by this operation is N1wn2\% t. This operation must be followed with one data card in free format containing the following information:

$\begin{array}{cl}\text { Item } & \text { Contents } \\ 1 & \text { DELTA } \\ 2 & \text { ALPHA } \\ 3 & \text { THETA }\end{array}$

Different values of delta, alpha and theta will allow the user to select different methods of step-by-step integration. The following table lists some possibilities:

DELTA ALPHA THETA
Newmarks Average Acceleraticn Linear Acceleration
Hilsoñ's Theta Method (low damping)
Hilson's Theta Method (high damping)

$1 / 2$	$1 / 4$	1.0
$1 / 2$	$1 / 6$	1.0
$1 / 2$	$1 / 6$	1.42
$1 / 2$	$1 / 6$	2.0

EIG EN, $\bar{M} 1, \stackrel{+}{M} 2, \bar{M} 3, N 1$
This operation solves the following eigenvalue problem:

$$
K \Phi=M \Phi \lambda
$$

 is named mio The matrix M is ma diagonal matrix of nonzero, fow or column matrix containing only the diagonal terms of M. The eigenvalues. . are stored in matrix M3. The eigenvalues are or dered in numericaliy increasing order and the eigenvectorsh2. are storedin the corresponding columns of number of significant figures of the eities the approximate zero or blank 4 figure accuracy will be used. The maximum accuracy possible is 16 figures. The use of more than 12 figure accuracy is not recommended.

The program reduces the problem to standard eigenvalue form
where

$$
\begin{aligned}
& K^{\boldsymbol{T}}=\mathbb{m}^{\top} K \quad \mathbb{m} \\
& I=m^{\top} M \quad m
\end{aligned}
$$

in which

$$
m_{1}=1 / \sqrt{M_{i 1}}
$$

The calculated mode shapes, , are normalized as follows:

$$
\Phi^{\top} M \Phi=I \quad \Phi^{\top} K \Phi=\lambda
$$

The program uses the standard Jacobi diagonalization method to solve for all eigenvalues and eigenvectors.

DYNAM,M1,M2,M3,M4, ${ }^{+} 5$, M6, N1
This operation evaluates the following set of uncoupled
Sec ond
sup superposition method for the dynamic analysis of a structural system.

$$
\ddot{x}_{1}+2 \lambda_{1} \omega_{1} \dot{x}_{1}+\omega_{1}^{2} x_{1}=p_{1}(t) \quad i=1 \text { to } N \text { nodes }
$$

M1 is the name of a row or column matrix which contains the N terms (frequencies in rad /sec) mi mis the name of a row modal damping to critical damping).
The generalized time-varying forces ${ }^{\text {din }}$ (t) (t) are not specified directly but are evaluafed from more fundamental informatimes by the program from the following maさrix equation:

$$
p=p \neq f=M 3^{2 x} M 4
$$

 array named M4. ${ }^{\text {The }}$ array mu is the same form as the input array described under the operation FONG. It is not necessary to use FUNG before the DYNAM operation.
M5 is the name of the N N N 1 array which contains the generalized displacement $X(t)$.
M6 is the name of the 1 x 1 array which contains the time increment associated with the generalized displacements.
$N 1$ is the number of displacements to be generated.
The method of integration used is axact for straight line segments.

PLOT.M1,N1
This operation will prepare a printer plot of selective rous of the matrix named Mi. thin in the number of rows of M1
 information:

The program automatically searches the information to be plotted for the maximum and minimum values. The difference in these numbers divided by 120 spaces is selected as the plot scale.
4. Heat Transfer Operations

The purpose of this series of operations is to form the total conductivity and heat capacity matrices for systems of two or three-dimensional elements, to form the flux vector and solve the defined set of equations. For two dimensional elements there are 4 to 9 node isoparametric elements. For three dimensional elements there are 8 to 21 node isoparamtric elements.

After the creation of an array containing the coordinates of the system nodes, the specification of element connectivity, the specification of material properties and the specification of constant temperature nodes, the conductivity and capacity matrices and the flux vector are formed. The equations are solved by the appropriate equation solver and the temperatures are printed in node order.

The HTXPR operation initializes the problem. The operation COORD is used to specify or generate nodal coordinates. Element connectivity is specified by the ELCON operation. Material properties and element boundary conditions are input via the PROP operation. The CTEMP operation establishes designated nodes as having constant temperatures. The equation profile for the problem is generated by the PROF operation.

To form the conductivity matrix, the operation SYMC is used. The heat capacity matrix can be approximated with either a consistant (CCAP) or lumped (LCAP) matrix formulation. The flux vector is formed with the FORM operation.

Time independent systems of equations are solved with the CaLC operation. Systems of equations involving the first derivative of temperature with respect to time are solved with the ODE series of operations. Nodal temepratures are printed in node number order with the PTEMP operation.

This operation initializes the heat transfer problem. for the this operation:
Item
1
2
3
4
5
6

Contents
Number of no des (NUMNDP)
Number of olements (NUML
Number of of material sets nummat
Spatial dimension (2 or 3) (NDM) Number of unknowns per node (NDF) Maximum number of nodes per element (NEN)
The number of unknowns per node will always be 1 for heat transfer problems.

COORD
This operation creates an array which contains the coordi nates for all nodes in a heat t
Item
1
2
3
4
5
6

Contents
Node nu mber
$X-c o o r d i n a t e$

- coord inate
Z-coordinate (if 3-D, else omit)
System type
Generation co de
System type refers to the coordinate system used when input-
ting data. coordinate system for use by cai-nps.

The input data is the same as shown above with the following correspondance:

Cartesian	Cylindrical	Spherical
\mathbf{X}	\mathbf{r}	ρ
\mathbf{Z}	Θ	Θ
	Z	ϕ

If the generation code is not zero (0) the next card is a generation vector for automatic node generation. free format as follows:

Item Contents
1
$\begin{array}{ll}1 & \text { Node number increment } \\ 2 & \text { X increment } \\ 3 & \text { increment } \\ 4 & 2 \text { increment (if 3-D else omit) } \\ 5 & \text { Last node number to be generated }\end{array}$
This operation must be terminated by a card with alternating zeroes and blanks.

This operation creates an array which contains the element

Iten
1
2
3
etc
$N+1$
$N+2$
$N+3$

> Contents \& lement number Node 1 number Node number NodetN number Haterial set number Generation code

If the generation code is not zero (0) the next card is a generation rector of the automatic generation of el

Item	Contents
1	Element number increment
2	Node 1 increment
3	Node 2 increment
etc	Node Nec increment
$N+1$	Nateriajset increment (usually 0)
$N+2$	Mat
$N+3$	Last element number to be generated

This operation must be terminated bryarow of alternating zeroes and blankst ary connectivity are shown below.

2-D Element

This operation inputs the material property data for a heat transfer system. The following information, entered in free format, must follow this operation:
$\begin{array}{cl}\text { Item } & \text { Contents } \\ 1 & \text { Material set number } \\ 2 & \text { Element type number (2 for } 2-D, 3 \text { for } 3-D)\end{array}$
Additional information must be provided depending on the type of element being used unitsote that mater

k		SI Uni ${ }^{\text {d }}$
c	BTU/1bm=0	$\mathrm{kJ} / \mathrm{kg}-0$
rho	1 bm	$\mathrm{kg} / \mathrm{m}^{3}$
q'	BT0/hr-ft3	可/m ${ }^{3}$

2-D Elements

This information must follow the PROP operation card and its two required entries. An entry must be made for each item. If the item is temperature dependent. the entry will be ignored.

```
Item
    contents
    7 Geometry type (sees below)
    8 Total number of lines with specified boundary
    conditions in elements with the same material
    set numer (NLBC) (see below)
9 Temperature dependence code (see below)
```

Geometry type is 1 for plane geometry and 2 for axisymmetry. The temperature dependence code is 0 if all material properties ait constant and if any property is temperature dependent. If the code is 1 , the following information (in free format) is required.

| Item | Contents |
| :---: | :--- | :--- |
| 1 | Conductivity in the X-direction code |
| 2 | Conductivity in the y-direction code |
| 3 | Heat capacity (specificheatidensity) code |
| 4 | Heat generated per unit volume code |

Where 0 means a constant property and 1 means a temperature dependent property. Temperature dependent properties are enteredin the form of a table. The tables are consecutively input for conductivity in the X-direction. conductivity in the q-direction, heat capacity and heat gen per unit volume. dependence code is zero. Tables are input in free format as shown on the following page.

Iten	Contents
1	Number of data pairs to be entered (This
2	Should be a single card)
3	Temperature 1

If an laines have a specifi ed boundary condition (NLBC>O) a subjected to more than one boundary. condition, a card must be used for each one of these conditions. The total number of cards must equal NLBC. The information is entered in free format as follous:

tem	Contents
1	Element number
2	Bonndary condition code (see below)
3	line code (see below)
4	propertryalue (see below)
5	anbient temperature
dary condition codes are:	

The bcundary condition codes are:

The property values are:
FIux Flux per unit a rea
Convection - constant heat transfer coefficient

$$
\begin{aligned}
& \text { Radiation - } \text { (ignored uct of eemperature dependent) } \\
& \text { Bolt zman. constant }
\end{aligned}
$$

The ambient temperature is ignored for the flux boundary If che boundary condition code is 4 (temperature dependent If rhe boundary condition code is ${ }^{\text {heat transfer coefficient) (temperature dependent }}$ temperature dependence. If is input in free format as is shown on the following page.

Contents
Number of data pairs to be entered (This should be a single card)
2 Temperature 1
4 should be on one card)
Temperature 2
Heat transfer coeficient 2 (These two entries should be on one card) etc
Temperature N
Heat transfer coeficient N (These two entries should be on one card)

3-D Elements

This information pust follow the prop operation card and its iwo required entries. item is temperature dependent, made for eachítem. ignored.

Geometry type is 1 for plane geometry and 2 for axisymmetry.
The temperature dependence code is 0 if all material proporties are constant and 1 if any property is temporature dep endent. If the code is 1 , the following information (in free format) is required.

Item	Contents
2	conductivity in the y -direction code
3	Conductivity in the z-direction code
4	Heat capaciry (specific heat dersity)
5	Heat generated per unit volume code

Where 0 means a constant property and 1 means a temperature dependent property. Temperatufe dependent properties arg tively input for conductivity in the. X-direction conductivity in the \bar{Y}-direction, conductivity in the z-direction, heat capacity and heat generated per unit vclume. Omit the tables for which the temperature dependence code is zero. Tables are input in free format as is shown on the following page.

If any, surfaces have a specified boundary condition (NSBC>0) a card must be subuitted for each surface. If the same surface is subjected tomore than one boundary condition a cardmust be used for each one of these conditions. The total number of cards mast oqual NSBC. The information is entered in free format as follous:

Item Contents

(see below)

The boundary condition codes are:
Plux
2 Convection (constant coefficient)
4 Convection (ten perature dependent property) The line codes are:

The property values are:

$$
\begin{aligned}
& \text { plux } \\
& \text { Convection - constant heat transfer coefficient } \\
& \text { Radiation - pronored for temperature dependent) } \\
& \text { omisivity br Stephan }
\end{aligned}
$$

The ambient temperature is ignored for the flux boundary condition
If the boundary condition code is 4 (temperature dependent heat transfor coefficiently a table must follow for the shown on the following page.

Item	Contents
1	Number of data pairs to be entered (This
2	Should be a single card)
3	Temperature
	Heat transfer coeficient 1

CTEMP
This operation inguts constant temperature boundary ture, you must enter the temperatures for those nodes. n mod por made. Automatic generati on capability is built into the operation. Data is entered in free format as follows:

Item	Contents
1	Initial node
2	Last node
3	Node increment
4	Temperature

These entries may be repeatedurtil all the constant temperature nodes are entered. This operation must be terminated by a row of alternating zeroes and blanks.

PROF

This operation establishes the profile of the equations for solution of the heat transfer. problem. After the issuance of this command, the problem is set and you may not change the node numbers with restrained boundary conditions (constant temperatures). The values of the restrained temperatures may be changed.

SIMC
This operation forms the symmetric conductance matrix for heat transfer problems.

OSYMC

This operation forms an unsymmetric conductance matrix.

LCA P

This operation forms a lumped capacitance approximation

CCA P
This operation forms a consistent capacitance approximation matrix for heat transfer problems.

FORM

This operation forms the flux vector for heat transfer problems.

CALC

This operation solves time independent heat transfer problems for temperature and updates the temperature matrix.

ODE.M 1

This pperation solves the first order ordinary differential equations arising ifrom time dependent heat Eransfer probinshed. this operation must be followed by the following data in free format:

Item 10	Contents
	Integration paramter theta for two point
	scheme default $=2 / 3$)

2 Integration parameter gamma for three point
3 Scheme (default = 1 integration parameter beta for three point
4 Scheme (default $=0.8$)
4 Maximum temperature difference for time step
5 Minimum temperature difference for time step adjustment
Default values are obtained by entering zeros for items 1, 2 and 3 .
If M1 is "LINE", the tho point integration scheme is used. Some suggested values for theta for the two-point scheme as given in Reference 4 are:

THETA
$1 / 2$
$2 / 3$
$3 / 878$
.878

Some suggested values for beta and gamma for the three point scheme as given in Reference 4 are:
Beta
$1 / 3$
$3 / 4$
4646
$4 / 5$
$9 / 10$
Gamma
$1 / 2$
$1 \bullet 0$
$1 \bullet 2184$
$3 / 2$
$3 / 2$

PTEMP
This operation prints the nodal temperatures of a hea: transfer system in node number order.

TOL,M 1

This operation sets the solution converqence tolerance to

$\operatorname{CON} \nabla$

DTIM, M1

This operation sets the time increment for integration in a heat transfer system to the value foundin the iximatrix M1.

ADT IM

This operation advances the time in a heat transfer problem by one tit

EIG V
This operation computes the dominant eigenvalue and eigenvector of the current heat transfer conductance matrix.

EROMPT
This operation permits the prompts for user input to be
suppressed without loss of ofer output an an second pRompt
will restore the prompts unless the print output is suppressed by the no command.
5. Graphics operations

CAL-NPS has a linited graphics capability for users with FLOT-10 compatible terminals or IBM 3277 Dual Screen terminals. Two- or three-dimensional meshes may be viewed in the $X-Y, Y-Z$ or $X-Z$ planes.

The graphics operations are initialized with the GRAPB operation by which the user specifies which graphics capable terminal is being used. The plix operation plots heat transfer meshes and the pLST operation plots structural meshes. The user may title the plots using the TITLE operation.

GRAPB

 format:

Terminal Code Terminal

$$
\begin{aligned}
& 1 \text { PLOT-10 Compatible Terminal } \\
& \text { IBM } 3277 \text { Dual SCreen }
\end{aligned}
$$

PLHX, N1
 meshes:
$N 1=1$
$N 1=2$
$N 1=3$

The default
is $\mathrm{x}-\mathrm{Z}$ glane 2-D meshes.

PLST, 1 1. H2,N1

This operation plots 2-D and 3-D strictural analysis meshes. Mis ine node coordinate natrix created by the fodES operathe LOADI operation The rou dinension is the number of elements and the column dinension is the maxinum number of nodes per element plus one. 2 contains the following information:

If the structure contains two dimensional membrane elements (pLaNE operation). the con nectivity must follow the convenIon shown below:

$(-1,-1)$

TITLE.N1
This operation allows the user to input Nu (up to three) fifteen character ines to label plots generated with either the pLax or PLST operations the The label will appear in the upper right hand area of the screen outside the plotting areadionis operation must immediately preceed the plotting command. The default value of $N 1$ is one.

CAL-NPS has a five level looping ability. The first operation is Loop and the last operation is NEXT. Operations within CAL-NPS are normally executed as they are encountered. If the operation requires data, the data cards follow the operation card. In the case of looping, however, all operation cards are stored within the computer before they are executed. If operations within the loop require data, the data cards must be supplied in the order required after the last NEXT operation. If an error is encountered while executing in a loop, the entire matrix of loop commands is deleted and the user is given the opportunity to try again. Matrices that have been modified by operations successfully completed while in the loop remain modified. After all loops are executed the computer storage required for these operations is automatically released by the program.

LOOP, N1
N1 is the number of times the loop is to be executed. Associated with each loop operation there must be a corresponding NEXT operation which signifies the end of the loop and the return of the control to the beginning of the loop. The following is a possible series of looping operations.

Pirst level loop
executed 5 times

NEXT.M1 or NEXT
The operation NEXT signifies the end of a loop an it in is aire an equal number of each. The operation NEXT, M1 will cause the loop to terminate if the first term in the matrix M1 is negative.

SKIP, M1, N1

This operation will cause the skip of the next N1 operations if the first term in the matrix named Mi is negative.

7. UsEr Defined Operations

USERA and USERB
These names are reserved for operations to be defined and programmed by the user. In order to program these operations it is necessary to understand the internal organization of CAL-NPS. Chapter III of Reference 2 contains the details.

E. LaRge problems

CAL-NPS is designed as an educational tool. It does not take advantage of banding and symmetry in matrix storage, except in the heat transfer operations. Larger problems can be solved by increasing the dimension of the L array, but a general purpose program that makes maximum advantage of out-of-core storage and takes advantage of banding and symmetry for in-core matrix storage is probablya better choice. With the above disclaimer, to increase problem size capability, increase the dimension of the L array and change the value of max to the new dimension size in the following:

> C-----MAIN PROGRAM

C-----SET PROGRAM CAPACITY
COMMON MTOT,NDP,L(100000)
MTOT $=100000$
NDP $=2$
CALL SETIME
Call Cal 1
STOP
END
With the dimension of the L array as above, the program currently executes in 1024 K bytes for CP/CMS. The region necessary for execution will increase about eight times the increase in the L array.

APPENDIX B

SAMPLE DATA FILE

This is a sample data file (FILE FTO4F001) for the hollow cylinder with circumferential heating strips problem.


```
\(\begin{array}{lll}11-.0110675 & 0 & 98 \\ 77 & -147135 & 0 \\ 2 & 1 \\ 11 & 0110675 & 0\end{array}\)
\(\begin{array}{lllllllllllllll}0 & O & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \text { ELC } & 0 & 0\end{array}\)
```



```
    \(\begin{array}{ccccc}13 & 2 & 1 & 1 & 1 \\ 1 & 1 & 0 & 10 \\ 2 & 1 & 13 & 12 & 1\end{array}\)
        \(\begin{array}{llllll}1 & 1 & 0 & 20 & \\ 35 & 24 & 23 & 1 \\ 1 & 1 & 0 & 30 & \\ & 46 & 35 & 34 & 1\end{array}\)
```

\qquad

$$
11
$$

$$
\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}
$$

$$
\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}
$$

$$
11
$$

$$
11
$$

PRO
SYM
FO
CA
RI

The following terminal session was recorded using the data file in Appendix B.

CAL
ENTER TERMINAL CODE:

3
IBM 3278 TERMINAL
CP TERMINAL LINESIZE 132
GLOBAL TXT LIB CMSLIE FORTMOD2 MOD2EEH NONIMSL IMSLSP 34121 FILEDEF O8 DISK FILE FT08FOO1 (RECFM FBA LRECL 132 BLKSIZE FILEDEF 04 DISK
FILEDEF 13 DISK CAL TEST (RECFM FBA LRECL 132 BLKSIZE 132) FILEDEF 50 DISK HLPCAL C LOAD CALO CAL FRTCMX GROUP1 GROUP2 GROUP3 GROUP4 GR (CLEAR START Sta TART
0.0 SECONDS
PROMPT

READR ${ }_{3}^{4}$
的寝HTXR

	ROWS	1	COLUM NS
1	ROWS	8	COLUM NS
2	ROWS	4	COLUM NS
4	ROWS	1	COLJM NS
1	ROWS	4	COLOMNS
4	ROWS	1	COLUM NS
4	ROWS	4	COLUM NS
7	ROWS	1	COL OMNS
0	ROWS	1	COLUM NS
1	ROWS	99	COLOMNS
2	ROWS	99	COLUM NS
	ROWS	80	COL OM NS
1	ROWS	99	COLUM NS
99	ROWS	1	COLUM NS
99	ROWS	1	COLUM NS

0.003 SECONDS
0.003 SECONDS


```
\(\left.\begin{array}{l}0.008 \\ 0.007 \\ 0.006 \\ 0.005 \\ 0.005 \\ 0.004 \\ 0.002 \\ 0.0 \\ 0.015 \\ 0.011 \\ 0.009 \\ 0.007 \\ 0.006 \\ 0.006 \\ 0.005 \\ 0.005 \\ 0.003 \\ 0.002 \\ 0.0 \\ 0.014 \\ 0.010 \\ 0.008 \\ 0.007 \\ 0.006 \\ 0.005 \\ 0.005 \\ 0.004 \\ 0.003 \\ 0.002 \\ 0.0 \\ 0.013 \\ 0.009 \\ 0\end{array}\right)\)
0.083 SECONDS
```


FLUX CONVERGENCE TEST

$$
\text { RNMAX }=\quad 60.927
$$

＊कCALC
ENERGY（DR舀 A DR）$=0.2249177052 \mathrm{D}+05$ 0．030 SECONDS必动PTEMP

NODAL TEMPERATURES TIME 0.0

NODE	TEMP
1	$0.16000 \mathrm{D}+03$
2	$0.16000 \mathrm{D}+03$
3	$0.16000 \mathrm{D}+03$
4	$0.16000 \mathrm{O}+03$
5	$0.16000 \mathrm{D}+03$
6	$0.16000 \mathrm{D}+03$
7	$0.13970 \mathrm{~B}+03$

	000 	
	 +	
	000	
	的	

NODAL TEMPERATURES
TIME
0.0

1.

2.

3.

4. Bettencourt J. M. Fin ite Element Analysis program

5. Zienkiewicz, O.C., op. cit., p. 568-604.

1. Defense Technical Information Center

Alexandria, Vírginia 22314
2. Iirrarýcode 0142 sch ool

Monterey. California 93940
3. Department Chairman Code 69

1
Department of Mechanical Engineering Naval postgraduate school
Monterey, California 93940
4. Frofessoi Gilles cantin, Code 69Ci

Depaitment of Mechanical Engineering Navai postgraduate School
Monterey, California 93940
5. professor O.C. Zienkiewicz

Singi Engineering Department
Singleton park
Hal \sin, UNITED KI NGDOM
6. 10 Ten. Jorge Bettencourt

Direccao Do Servico De Instrucao Ministerio Da Marinha Liskoa, PORTOGAL
7. Profesor Paul F. Pucci Code 69pc

Department of Mechanical Engineering Naval Postgraduate School
Monterey. California 93940
8. Professor Matthew D. Kelleher. Code 69 Kk 1
Department of Mechanical Engineering
Naval postgraduate School
Monterey. California 93940
9. Professor David Salinas, Code 69zc

Department of Mechanical engineering
Naval Postgraduate School
Monterey. California 93940
10. Professor Robert E. Newton, Code 69 Ne

Department of Mechanical Engineering Naval postgraduate School
Monterey. California 93940
11. LCDR Lael R Easterling. USN

4243 N.W. 54 th St.
Oklahoma City. Okiahoma
73112
12. Gecrges Verchery

Department de Genie Me canique
Universite dechnologie
60200 compiegne, FRANCE
13. Jean Louis armand

Institut de Recherche Pour la
Construction Navale
3 avenue de Grand champ
78230 le Pecq. FRANCE
14. Professor K. J. Bathe

Mechanical Engineering Department $77^{\text {M }}$ Mas.
77° Massachusetts Avenue
Cambridge, Massachusetts 02139
15. William J. Dodge

Oak Ridge National Lab cratory
Buidding $204-1$ Box
Oak Ridge, Tennessee 36830
16. Professor Edward L. Wilson

Structural Engineering Division
Civil Engineering department
Oniversíy of california (Berkeley)
Berkeley, california 9470
17. Dr. William J. Stronge (Code 603)

Naval Fhina Lakens California 93955
18. J. E. Serpanos
code 3162
Naval Weapons Center
China Lake, California 93955
19. Dr. Jean Louis Batoz

Department de Genie Mecanique
Universite de Technologie
60200 Compiegne, FRANCE
20. Professor Guri Dhatt Centre Technique de 1 Informatique
universite Laval
Quebec, Prov. de Quebec
21. Er. Gilbert Touzot

Universite de Technoloqie
60200 Compiegne, FRANCE
22. R. A. Langworthy

Applied Technology Laboratories
OLAboratory
Labearch and Technology
Fort Eustis, Virginia 23604
23. E. M. Menoe Lats \& Mechanic Research Center street
Watertown, Massachusetts 02172
24. Dr. Paris Genalis 1

Naval Ship Research and Development Center Bethesda, Maryland 20084
25. Code SEC 6734

Naval Shipi Engineering Center 19112
26. Code 471

Code 471

27. Office of the Secretary of Defense

DDREE
3D1089 Pentagon
Washington, 10 C
20301
28. R Rice (Code 6360)
Navat Research Laborat ory
Washington. DC 20375
29. E. Van Reuth

1440 Hilson Boulevard
1440 Wilson Boulevard
Arlington, Virginia 2209
30. I. Machlin
Naval Air System Command
Department of the Navy
Washington. DC 20361
31. B. Probst, MS 49-3

NASA-Lewis Research center
Cloverandokpark road
32. Mr. CiA Pis Blankenship. MS 105-1

21000 Brookpark Road
Cleveland, Ohio 44135
33. Dr. He Graham/AFLM/ILM Force

Air Force Materials Laboratory
Wright $\begin{aligned} & \text { ORatterson Air Force Base. } \\ & 45433\end{aligned}$
34. S. Freiman (Code 6363)
Naval Research Laborat ory
Washington. DC 20375
35. Ne Me Geyer/AFML/LLM

Wright-pat terson Air Force Base.
36. S. Hiederhorn

National Bureau of Standards
Hashington. DC 20234
37. gT_{22} J. Hernarde Road. JI., USN

Peekskilil New York 10566
38. Allan Fi Greiner \quad Res Rearch center
39. LCDR Lisis. ${ }^{\text {B }}$ Code Elliot

Long Beach Naval Shipyard
long Beach, California 90822

40. Martin A Krenzke Naval Ship

Research and Development Center

A236, B1dg 19

Carderock Laboratory
Bethesda. Mary land 20084
41. Professor Robert in Taylor
oniversity of California
at Berkeley
Berkeley, California 94720
42. J. Gagorik (Code 62 Structures)
NavSEA $3 R 24$ DC 20362
43. ICDR 円arren L. Roberts 1

Albert Lea, Minnesota 56007

Integration of finite element analysis p

[^0]: LIST
 The LIST operation prints the directory information for arrays in storage and the amount of storage used.

